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Asymmetries: ¢ Amplitude: El Nifio tends to be stronger than La Nifa

e Duration:  La Nina persists longer

e Sequencing: El Nifo tends to be followed by La Niia
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Asymmetry in duration: Cold events last longer
HadISST (1880-2012)
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Asymmetry in duration: Cold events last longer

HadISST (1880-2012) ERSST v3b (1880-2012)
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Asymmetry in duration: Cold events last longer
ERSST v3b (1880-2012)
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Asymmetry in sequencing:
Warm-to-Cold is more likely than Cold-to-Warm

HadISST
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Asymmetry in sequencing:
Warm-to-Cold is more likely than Cold-to-Warm

HadISST ERSSTv3b
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What causes the asymmetries of ENSO in
(1) Amplitude (2) Duration and (3) Sequencing?

Proposed mechanism

Air-Sea coupling efficiency is higher during warm conditions,
lower during cold conditions, at the Pacific Ocean.

This can result in the above asymmetries in a consistent way.
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Air-Sea coupling for ENSO

Efficiency: how strong surface wind stress responds to changes in SST

Climatology

. a Nina El Nino
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Wind responds more strongly to warm conditions
MERRA 2 months before and after event peak
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Wind responds more strongly to warm conditions
MERRA 2 months before and after event peak

FSU 2 months before and after event peak
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Wind responds more strongly to warm conditions

MERRA 2 months before and after event peak
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Modified delayed
Oscillator
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Modified delayed
Oscillator
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Modified delayed i T
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Modified delayed i T
Oscillator
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Two scenarios:

1) Oscillations of a stable system triggered by stochastic noise
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Asymmetry in duration: Cold events last longer
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Asymmetry in duration: Cold events last longer
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Asymmetry in duration: Cold events last longer
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Asymmetry in sequencing:
Warm-to-Cold is more likely than Cold-to-Warm

HadISST
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Asymmetry in sequencing:

Warm-to-Cold is more likely than Cold-to-Warm r=0%
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Asymmetry in sequencing:

Warm-to-Cold is more likely than Cold-to-Warm r=0%
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Asymmetry in sequencing:

Warm-to-Cold is more likely than Cold-to-Warm
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Asymmetry in sequencing:

Warm-to-Cold is more likely than Cold-to-Warm
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Why does the polarity dependence in the coupling efficiency result in the asymmetries?

Coupling efficiency = 0, no oscillation

Coupling efficiency is small /\ /\ /\ ,

Coupling efficiency is larger /\ /\ A /\ /\ /\ :
BAVARVERVARVERVERY

Larger coupling efficiency for El Nino — EI Nino terminates faster and overshoots

Smaller coupling efficiency for La Nina — La Nina terminates slower
and is more susceptible to noise
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Why does the polarity dependence in the coupling efficiency result in the asymmetries?

Coupling efficiency = 0, no oscillation

Coupling efficiency is small /\ /\ /\ ,

Coupling efficiency is larger /\ A /\ /\ /\ :
SRV VARV VARVARV

Larger coupling efficiency for El Nino — EI Nino terminates faster and overshoots

Smaller coupling efficiency for La Nina — La Nina terminates slower
and is more susceptible to noise
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The time mean state is, in fact, a warm state
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The time mean state is, in fact, a warm state

Time Mean

Equilibrium

That accounts for a fraction of the duration asymmetry.
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Summary

e Within the framework of a delayed-oscillator, if the wind response is
more sensitive to warm SST anomalies, or more generally,

if the coupling efficiency is higher during warm events:

e Higher likelihood of warm — cold than cold — warm

e (Cold events last longer and are more susceptible to noise

e The time mean state is a warm state

These results hold for
the stochastically-forced stable mode and self-sustained oscillatory mode.
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Thank Youl!




Two scenarios:

1) Oscillations of a stable system triggered by stochastic noise
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NINO 3.4

El Nifio — Southern Oscillation
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